
### Rectifier diodes ultrafast, rugged

### **BYV40E** series

### **FEATURES**

- Low forward volt drop
- Fast switching
- Soft recovery characteristic
- Reverse surge capability
- High thermal cycling performance
- low profile surface mounting package

### **SYMBOL**



### QUICK REFERENCE DATA

$$V_{R} = 150 \text{ V}/200 \text{ V}$$

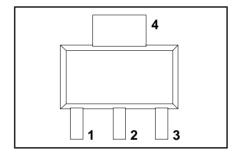
$$V_{F} \leq 0.7 \text{ V}$$

$$I_{O(AV)} = 1.5 \text{ A}$$

$$I_{RRM} = 0.1 \text{ A}$$

$$t_{rr} \leq 25 \text{ ns}$$

### **GENERAL DESCRIPTION**


Dual, common cathode, ultra-fast, epitaxial rectifier diodes intended for use as output rectifiers in high frequency switched mode power supplies.

The BYV40E series is supplied in the SOT223 surface mounting package.

### **PINNING**

| PIN | DESCRIPTION |  |  |
|-----|-------------|--|--|
| 1   | anode 1     |  |  |
| 2   | cathode     |  |  |
| 3   | anode 2     |  |  |
| tab | cathode     |  |  |

### **SOT223**



### **LIMITING VALUES**

Limiting values in accordance with the Absolute Maximum System (IEC 134).

| SYMBOL                                                   | PARAMETER CONDITIONS                                                                                                                                           |                                                                                                                                          | MIN.          | MAX.                             |                                  | UNIT          |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|----------------------------------|---------------|
| V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub>   | Peak repetitive reverse voltage<br>Crest working reverse voltage<br>Continuous reverse voltage                                                                 | $\textbf{BYV40E}$ $T_{sp} \leq 120^{\circ}\text{C}$                                                                                      | 1 1 1         | <b>-150</b><br>150<br>150<br>150 | <b>-200</b><br>200<br>200<br>200 | V<br>V<br>V   |
| I <sub>O(AV)</sub> I <sub>FRM</sub> I <sub>FSM</sub>     | Average rectified output current (both diodes conducting) <sup>1</sup> Repetitive peak forward current per diode Non-repetitive peak forward current per diode | $T_{sp} \le 132$ °C<br>$t_p = 10$ ms<br>$t_n = 8.3$ ms                                                                                   | -<br>-<br>-   | 1                                | .5<br>.5<br>.6                   | A<br>A<br>A   |
| I <sub>RRM</sub>                                         | Repetitive peak reverse current per diode                                                                                                                      | sinusoidal; $T_j = 150^{\circ} C$ prior to surge; with reapplied $V_{\text{RWM}(\text{max})}$ $t_p = 2 \ \mu \text{s}; \ \delta = 0.001$ | -             | 0                                |                                  | A             |
| $egin{array}{c} I_{RSM} \ T_{stg} \ T_{j} \ \end{array}$ | Non-repetitive peak reverse current per diode Storage temperature Operating junction temperature                                                               | t <sub>p</sub> = 100 μs                                                                                                                  | -<br>-65<br>- |                                  | .1<br>50<br>50                   | A<br>°C<br>°C |

<sup>1</sup> Neglecting switching and reverse current losses

Rectifier diodes ultrafast, rugged

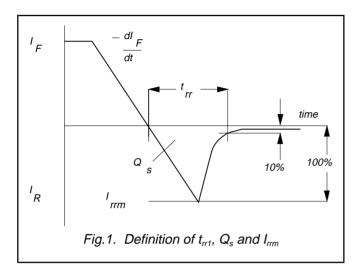
BYV40E series

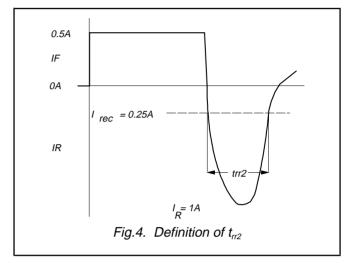
### **ESD LIMITING VALUE**

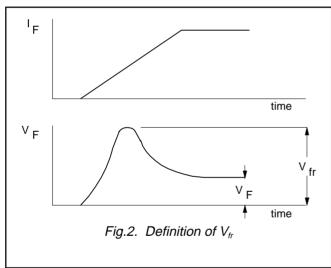
| SYMBOL         | PARAMETER                                 | CONDITIONS                                  | MIN. | MAX. | UNIT |
|----------------|-------------------------------------------|---------------------------------------------|------|------|------|
| V <sub>c</sub> | Electrostatic discharge capacitor voltage | Human body model;<br>C = 250 pF; R = 1.5 kΩ | 1    | 8    | kV   |

### THERMAL RESISTANCES

| SYMBOL               | PARAMETER                                   | CONDITIONS                                                        | MIN. | TYP.      | MAX. | UNIT       |
|----------------------|---------------------------------------------|-------------------------------------------------------------------|------|-----------|------|------------|
| R <sub>th j-sp</sub> | Thermal resistance junction to solder point | one or both diodes conducting                                     | -    | -         | 15   | K/W        |
| R <sub>th j-a</sub>  | Thermal resistance junction to ambient      | pcb mounted; minimum footprint pcb mounted; pad area as in fig:11 |      | 156<br>70 | -    | K/W<br>K/W |


### **ELECTRICAL CHARACTERISTICS**


characteristics are per diode at T<sub>i</sub> = 25 °C unless otherwise stated


| SYMBOL           | PARAMETER                                         | CONDITIONS                                                                                                                         | MIN. | TYP.    | MAX.      | UNIT     |
|------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------|----------|
| V <sub>F</sub>   | Forward voltage                                   | $I_F = 0.5 \text{ A}; T_j = 150^{\circ}\text{C}$                                                                                   | -    | 0.50    | 0.7       | V        |
| ١,               | Doverse surrent                                   | I <sub>F</sub> = 1.5 A                                                                                                             | -    | 0.82    | 1.0       | ^        |
| I <sub>R</sub>   | Reverse current                                   | $\dot{V}_R = V_{RWM}$ ; $T_j = 100 ^{\circ}C$<br>$V_R = V_{RWM}$                                                                   | -    | 100     | 300<br>10 | μA<br>μA |
| $Q_s$            | Reverse recovery charge                           | $I_{\rm F} = 2  \text{A};  V_{\rm R} \ge 30  \text{V};  -\text{d}I_{\rm F}/\text{d}t = 20  \text{A}/\mu\text{s}$                   | -    | -       | 11        | nC       |
| t <sub>rr1</sub> | Reverse recovery time                             | $I_{\rm F} = 1 \text{ A}; V_{\rm R} \ge 30 \text{ V};$                                                                             | -    | -       | 25        | ns       |
|                  | Davaraa raaayan tina                              | $-dI_{F}/dt = 100 \text{ A/}\mu\text{s}$                                                                                           |      | 40      | 20        |          |
| $V_{fr}$         | Reverse recovery time<br>Forward recovery voltage | $I_F = 0.5 \text{ A to } I_R = 1 \text{ A; } I_{rec} = 0.25 \text{ A}$<br>$I_F = 2 \text{ A; } dI_F/dt = 20 \text{ A/}\mu\text{s}$ | -    | 10<br>3 | 20<br>-   | ns<br>V  |

# Rectifier diodes ultrafast, rugged

### BYV40E series







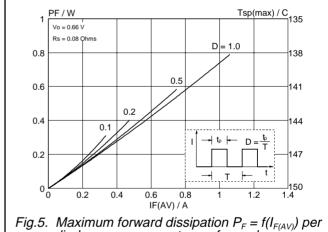
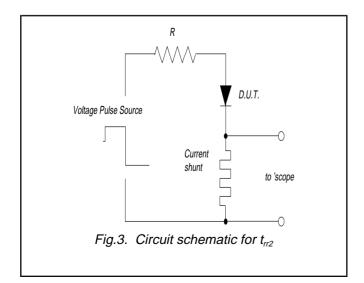
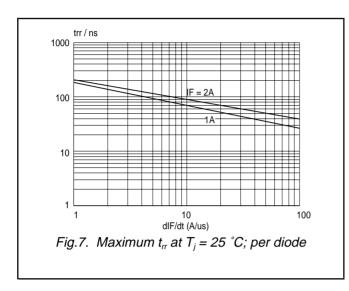
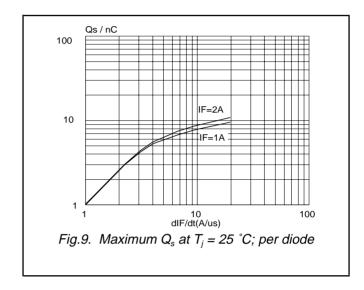




Fig.5. Maximum forward dissipation  $P_F = f(I_{F(AV)})$  per diode; square current waveform where  $I_{F(AV)} = I_{F(RMS)} x \sqrt{D}$ .





Fig.6. Maximum forward dissipation  $P_F = f(I_{F(AV)})$  per diode; sinusoidal current waveform where a = form factor  $= I_{F(RMS)} / I_{F(AV)}$ .

Philips Semiconductors Product specification

## Rectifier diodes ultrafast, rugged

### BYV40E series





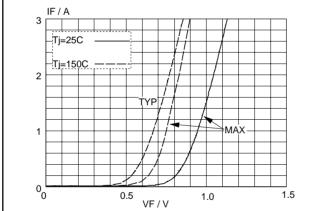



Fig.8. Typical and maximum forward characteristic  $I_F = f(V_F)$ ; parameter  $T_j$ 

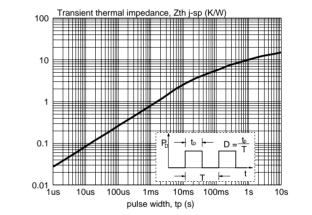
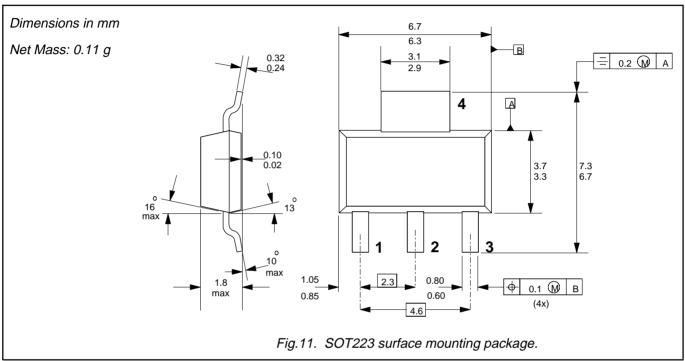




Fig.10. Transient thermal impedance; per diode;  $Z_{th j-sp} = f(t_p)$ .

Rectifier diodes ultrafast, rugged BYV40E series

### **MECHANICAL DATA**



- Notes
  1. For further information, refer to Philips publication SC18 " SMD Footprint Design and Soldering Guidelines".
  Order code: 9397 750 00505.
  2. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

### Rectifier diodes ultrafast, rugged

BYV40E series

#### **DEFINITIONS**

| Data sheet status         |                                                                                       |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Objective specification   | This data sheet contains target or goal specifications for product development.       |  |  |  |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |  |  |  |
| Product specification     | This data sheet contains final product specifications.                                |  |  |  |
| Limiting values           |                                                                                       |  |  |  |

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

#### **Application information**

Where application information is given, it is advisory and does not form part of the specification.

#### © Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

### LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.